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On Entropy-Constrained Vector Quantization Using
Gaussian Mixture Models
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Abstract—A flexible and low-complexity entropy-constrained
vector quantizer (ECVQ) scheme based on Gaussian mixture
models (GMMs), lattice quantization, and arithmetic coding is
presented. The source is assumed to have a probability density
function of a GMM. An input vector is first classified to one
of the mixture components, and the Karhunen-Lòeve transform
of the selected mixture component is applied to the vector,
followed by quantization using a lattice structured codebook.
Finally, the scalar elements of the quantized vector are entropy
coded sequentially using a specially designed arithmetic coder.
The computational complexity of the proposed scheme is low,
and independent of the coding rate in both the encoder and
the decoder. Therefore, the proposed scheme serves as a lower
complexity alternative to the GMM based ECVQ proposed by
Gardner, Subramaniam and Rao [1]. The performance of the
proposed scheme is analyzed under a high-rate assumption, and
quantified for a given GMM. The practical performance of the
scheme was evaluated through simulations on both syntheticand
speech line spectral frequency (LSF) vectors. For LSF quantiza-
tion, the proposed scheme has a comparable performance to [1]
at rates relevant for speech coding (20-28 bits per vector) with
lower computational complexity.

Index Terms—Entropy constrained, vector quantization, VQ,
lattice, Gaussian mixture model, GMM, arithmetic coding

I. I NTRODUCTION

It is well-known that an entropy-constrained vector quan-
tizer (ECVQ) achieves better rate-distortion performancecom-
pared to a resolution-constrained vector quantizer (RCVQ).
This is due to the flexibility of assigning bit sequences of
different lengths to different code vectors according to the
probability of their appearance. However, classical codebook-
training based ECVQ has been limited to low-rate vector
quantizers (VQ), e.g. [2], because of the exponentially increas-
ing computational complexity and memory requirements for
higher rates.

Gaussian mixture modeling has been successfully applied to
RCVQ, e.g., [3]–[7]. A Gaussian mixture model (GMM) has
the form of a weighted sum of Gaussian density functions, and
is suitable for modeling of real-world sources with an unknown
probability density function (PDF). The GMM parameters
can be optimized for a source using a training database [8].
Applied to RCVQ, the method of [4] achieves good rate-
distortion performance, with a low computational complexity.
In particular, the computational complexity of the method is
independent of the coding rate, making vector quantization
at a high rate feasible. The method of [4] is additionally rate
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scalable, and works over a large range of rates without the need
of retraining the codebooks. For communication channels with
errors, such a method facilitates rate-adaptation according to
the channel condition.

Rate-independent complexity and rate-scalability are attrac-
tive features also for an ECVQ. It has been shown that, at a
high rate, the quantization point density of an optimal ECVQ
is uniform for a source with finite differential entropy [9],
[10]. This theoretical result in combination with Gersho’s
conjecture [11] form the main motivation for the usage of
a lattice structured codebook for vector quantization followed
by entropy coding using, e.g., an arithmetic code [12], [13].
The regular structure of a lattice facilitates closest-point search
algorithms (quantization) with low computational complexity,
e.g, [14] for classical lattices and [15] for arbitrary lattices.
For a tutorial on the “best known” lattices for quantization,
see [16].

While the lattice structure simplifies the codebook design,
the subsequent step of generating the variable-length bit
sequence, is a non-trivial task for an ECVQ. A traditional
arithmetic code is based on the probability mass function
(PMF) of the code vectors, e.g., obtained through a histogram,
and the cumulative distribution function (CDF) according to
a particular ordering of the vectors. Two critical difficulties
appear in such a design at a high rate [17]. First, the PMF
storage and the CDF computation become infeasible as the
number of code vectors increases exponentially with rate.
Second, as the volumes of the quantization cells shrink, the
available data may not provide a PMF estimate with enough
accuracy. Popat and Picard proposed a solution, mainly for the
second problem, using a GMM for describing the source PDF
[17], [18]. Their solution is designed for quantization using a
Z lattice and a GMM with diagonal covariance matrices. Since
the CDF is computed by summation over the PMF (computed
from the GMM), the computational complexity of [17], [18]
grows exponentially with rate. Another solution is proposed
by Gardner, Subramaniam and Rao [1], and we refer to their
ECVQ as GSR-ECVQ. In GSR-ECVQ, a scalar conditional
approximation is proposed, for which the PMF and CDF are
computed scalar-wise, and conditioned on past scalar elements
of the quantized vector. The GSR-ECVQ has a computational
complexity that is independent of rate in the encoder and linear
in rate in the decoder. The GSR-ECVQ also generalizes the
method of [17], [18] by allowing for lattices other than theZ
lattice, and a GMM with full covariance matrices.

An alternative ECVQ design is based on a classified VQ
where an input vector is first classified to one of the mixture
components. The input is quantized using a component-wise
lattice quantizer and then coded using an entropy code. The
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Fig. 1. Schematic diagram of a GMM-based classified ECVQ.

schematic diagram of such a scheme is shown in Fig. 1. The
idea of a GMM-based classified ECVQ has appeared in the
theoretical works of [19], [20]. However, a crucial component
of such a design, a practically feasible entropy code, has not
yet been reported.

In this paper, we propose a low-complexity ECVQ (LC-
ECVQ) based on a classified VQ [19], [20] that enables the
use of a, compared to [1], more practical arithmetic code. The
proposed LC-ECVQ has a further reduced complexity than
GSR-ECVQ at the cost of lower performance at high rates. In
particular, the LC-ECVQ has a computational complexity that
is independent of rate both in the encoder and the decoder.
The reduced complexity is mainly due to the simplified arith-
metic code design, which has the additional advantage of re-
duced sensitivity to numerical errors in the CDF computation.
Furthermore, the proposed LC-ECVQ has the possibility of
applying different lattices for different component quantizers
depending on the local behavior of the source. This is useful
for sources that are likely to contain vanishing dimensions
[21]–[23] (the high-rate assumption is violated in these dimen-
sions). We propose a lattice adaptation scheme for LC-ECVQ
that adapt the lattice of each mixture component depending on
the coding rate. We show experimentally for a speech derived
source that LC-ECVQ with lattice adaptation achieves better
performance at low rates than GSR-ECVQ with a fixed lattice.

II. PRELIMINARIES

In this section, the notation and the problem formulation
are first introduced. We then review the classical result of the
optimal ECVQ at a high rate. Finally, the signal model using
a GMM is presented.

A. Problem formulation

Let x = [x1, . . . , xK ]T denote aK-dimensional vector
drawn from a vector stationary random source, andx̂ =
[x̂1, . . . , x̂K ]T denote the corresponding vector after quanti-
zation. Letf(x) denote the PDF ofx, and p(x̂) denote the
PMF of x̂.

In this paper, we consider the mean square error (MSE) as
the average distortion,D, between the original and quantized
variable,

D =
1

K

∫

f(x)||x − x̂||2dx. (1)

The quantized vectors are coded using a variable-rate
code. The average rate of the generated bit stream isĤ =

∑

x̂
p(x̂)ℓ(x̂), whereℓ(x̂) denotes the codeword length ofx̂.

The optimal variable-rate code has an average rate approaching
the entropy of̂x,

Hlower = −
∑

x̂

p(x̂) log2 p(x̂). (2)

Using an entropy code such as the arithmetic code [12], [13],
this rate can be approached arbitrarily closely by increasing
the sequence length.

The optimal ECVQ has a quantization point density function
gc(x) that minimizes the average distortionD, under the
constraint that the entropyHlower equals a desired target rate
R. The optimalgc(x) minimizes the extended criterion

η = D + λ (Hlower − R) , (3)

whereλ is the Lagrange multiplier for the entropy constraint.
The goal of this work is to design a flexible and low com-
plexity ECVQ that performs closely to a system with the
theoretically optimalgc(x).

B. High-rate ECVQ

The optimization problem (3) can be solved under a high-
rate assumption, which implies that the data PDF is considered
uniform within the boundary of a quantization cell. Assuming
that the source has a finite differential entropy, denoted byh,
it can be shown that the optimalgc(x) is a constant [11], [9],

gc = 2R−h. (4)

The theoretical result implies that, at a high rate, uniformly
distributed quantization points are optimal if the point indices
are subsequently coded using an entropy code. This result is
the main motivation for using a lattice structured codebook
in an entropy-constrained quantizer. A high-rate ECVQ for a
non-difference distortion measure is discussed in [24], [25].

Using a lattice quantizer, the MSE distortionD at a high
rate is approximately [11]

D ≈ CKg
−

2
K

c , (5)

whereCK is the normalized moment of inertia of the quanti-
zation cell shape, defined by

CK =
1

K
g

K+2

K

c

∫

S(x̂)

||x − x̂||2dx, (6)

for the quantization cell shapeS(x̂) of a lattice pointx̂.

C. Gaussian mixture modeling

Throughout the remainder of this paper we assume thatf(x)
is a GMM density withM mixture components,

f(x) =
M
∑

m=1

ρmfm(x), (7)

wherem denotes the component index,ρm denotes the mix-
ture weight of them’th component, andfm(x) is a component
Gaussian PDF with meanµm and covariance matrixDm. Let
Dm = VmΣ2

mVT
m be the eigenvalue decomposition, where

Σ2
m = diag[σ2

1 , . . . , σ2
K ] is a diagonal matrix consisting of

the eigenvalues ofDm. VT
m is a decorrelating transform, also

known as the Karhunen-Loève transform (KLT), of themth
mixture component.
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III. LC-ECVQ ALGORITHM

The proposed LC-ECVQ encoding is a two step procedure.
First, the input vectorx is classified to one mixture component
with index m̃. Next, x is quantized tôx using them̃th per-
component quantizer. Both the component indexm̃ and the
quantized vector̂x are to be coded using an arithmetic code.

A. Classification

In LC-ECVQ, a maximum a posteriori (MAP) classifier is
used to determine the index of the mixture component,m̃, to
which the data vectorx most likely belongs to,

m̃ = arg max
m

p(m|x) = argmax
m

ρmfm(x). (8)

The MAP classifier selects the per-component quantizer for
quantization of the data vector. An alternative classifier is to
minimize a weighted sum of rate and distortion in a Lagrange
formulation [19], [20]. The MAP classifier is used in LC-
ECVQ for two main reasons. First, the Lagrange formulation
would require quantization using all component quantizers(for
distortion computation), which increases the computational
complexity. Second, if the mixture components are sufficiently
separated, the additional distortion term mainly affects the
code vectors near the class boundaries, and their contribution
to the overall performance is expected to be low. We further
show in Section IV that the MAP classifier based solution
has a bounded worst-case performance, which can be used to
determine the expected performance of LC-ECVQ.

B. Transform and quantization

We transformx by subtracting the mean, and applying the
KLT of the m̃th mixture component before lattice quantization,

y = VT
m̃(x − µm̃). (9)

The transformed variabley is then quantized to the closest
code vector neighbor in a lattice structured codebook.

A lattice Λ is generated through a scaled generating matrix
G:

Λ = {c GTu : u ∈ Z
k}, (10)

wherec is a scaling factor, andG is the generating matrix of
the form (without losing generality [15])

G =











g1,1 0 . . . 0
g2,1 g2,2 . . . 0

...
...

. . .
...

gK,1 gK,2 . . . gK,K











, (11)

with positive diagonalsgk,k. We further assume thatG is
normalized such that the determinant is one.

The quantized vector using thẽmth lattice codebook is
given byŷ = c GT

m̃û, for a particular̂u. We further normalize
y by the square root of the eigenvalues,

y′ = Σ−1
m̃ y, (12)

and the quantized vector is scaled similarly,

ŷ′ = c Σ−1
m̃ GT

m̃û. (13)

The classification (8), transform (9) and scalings (12-13)
enable a simplified design of the arithmetic code. For a GMM
with sufficiently separated mixture components, a Gaussian
PDF with zero mean and identity covariance matrix approxi-
mates the PDF ofy′ well, and this is exploited in the entropy
coding of the quantized and scaledŷ′ vector. Details regarding
the encoding and decoding of the arithmetic code are given in
Section V.

C. Lattice selection

In LC-ECVQ, different lattices can be used in different com-
ponent quantizers. At a high rate and for a fixed dimension,
the optimal lattice for quantization has the lowest normalized
moment of inertia among all lattices. The best known lattices
for dimensions up to ten are listed in [16]. However, those
lattices are not necessarily the best at low rates. In particular,
many sources derived from speech and images are likely to
contain vanishing dimensions [21]–[23], and a GMM of such
a source may have mixture components with some near-zero
principal components. When an eigenvalue corresponding to
a principal component is small compared to the quantizer
step size, the assumption of high-rate does not apply to this
dimension, and the best known lattice from [16] may not be
the best choice for this rate.

In LC-ECVQ, we propose a heuristic lattice adaptation
scheme for a given rate. For each mixture component, the
eigenvalues are compared to a constant experimentally set to
2D, where the high-rate distortionD is computed using (5)
using the best-knownK-dimensional lattice from [16]. The
ǫ dimensions that have eigenvalues less than the constant
are quantized using theZ lattice. The remainingK − ǫ
dimensions are quantized using the best-known lattice inK−ǫ
dimensions (the generating matrices are normalized to havethe
determinants equal to one) [16].

Fig. 2 shows a low-rate quantization example for a 2-
dimensional source with one near-zero principle component.
For this example, the LC-ECVQ with theZ2 lattice performs
better than with theA2 (hexagonal) lattice, with both a lower
distortion and a lower rate. The lower distortion is because
that the code vectors using theZ2 lattice are denser on the
diagonal. The lower rate is because that the code vectors off
the diagonal (using theA2 lattice) are coded using much lower
probabilities. The example provides an intuitive explanation of
using theZ lattice in dimensions with small eigenvalues.

In the K-dimensional space, the lattice adaptation scheme
corresponds to quantization using a hybrid lattice, for which
the generating matrix are merged from theǫ × ǫ dimensional
identity matrix and the(K − ǫ)× (K − ǫ) dimensional lattice
generating matrix. The hybrid generating matrices can be
computed off-line. Therefore, the lattice adaptation scheme
is not associated with any additional computations compared
to using a traditional lattice. We show experimentally in
Section VIII-A that the lattice adaptation scheme significantly
improves the LC-ECVQ performance at low rates.

The high-rate optimal quantization point density (4) moti-
vates the use of lattices with same cell volumes in all mixture
component (a proof is given in [19], [20]). Therefore,c is
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Fig. 2. Examples of quantization of a source with vanishing dimensions using
LC-ECVQ based on theZ2 lattice and theA2 lattice (hexagonal lattice). The
circles are the quantized vectors using the two lattices.

considered as a constant for a givenR, and the samec is used
in all component quantizers.

IV. T HEORETICAL ANALYSIS

The performance of the proposed LC-ECVQ is analyzed
theoretically under a high-rate assumption. Neglecting contri-
butions from quantization cells located on the classification
boundaries, the MSE distortion is given by (5) at a high rate.
The rate of LC-ECVQ and its lower and upper bounds are
derived in this section. We show that the performance loss due
to classification can be predicted, and the loss approaches zero
for a GMM with well-separated mixture components. Finally,
we discuss the optimization of the quantizer for different
target rates. The analysis of this section does not apply to the
lattice adaptation scheme (which is a low-rate optimization),
and assumes that the same lattice is used in all mixture
components.

A. Rate performance

In the proposed LC-ECVQ, both the component indexm̃
and the quantized vector̂x are entropy coded. The average
rate is given by

Ĥ = −
∑

x̂

p(x̂)(log2 ρm̃ + log2 pm̃(x̂)), (14)

whereρm̃ is the weight of them̃’th mixture component and
pm̃(x̂) =

∫

S(x̂) fm(x)dx is the PMF of x̂ using them̃’th

component PDF. Under a high-rate assumption,Ĥ can be
approximated by, e.g., [26],

Ĥ ≈ −
∫

f(x) log2 (ρm̃fm̃(x)) dx + log2 gc, (15)

where gc = vol(x̂)−1 denotes the inverse volume of the
quantization cell forx̂. The integral of (15) can be solved
through numerical integration. The integral is independent of
the coding rate, and can be evaluated once for a given GMM
density.

1) Lower bound:The lower performance bound is straight-
forward. Sincef(x) ≥ ρmfm(x) for all m and using (4), we
have

Ĥ ≥ −
∫

f(x) log2 f(x)dx + log2 gc

= h + log2 gc ≈ Hlower, (16)

which is the entropy of̂x under a high-rate assumption.
2) Upper bound: The upper performance bound can be

derived for the MAP classifier, whereρm̃fm̃(x) ≥ ρmfm(x)
for all m. We then have

Ĥ ≈ −
∫ M
∑

m=1

ρmfm(x) log2 (ρm̃fm̃(x)) dx + log2 gc

≤ −
∫ M
∑

m=1

ρmfm(x) log2 (ρmfm(x)) dx + log2 gc

= HM +

M
∑

m=1

ρmhm + log2 gc , Hupper, (17)

where

HM = −
M
∑

m=1

ρm log2 ρm, (18)

is the entropy of the component index, and

hm = −
∫

fm(x) log2 fm(x)dx

=
1

2
log2

(

(2πe)K |Dm|
)

, (19)

is the differential entropy of themth Gaussian component,
with | · | denoting the determinant.

3) Performance prediction:Since the rate of the proposed
LC-ECVQ is bounded, the maximum theoretical loss for a
GMM density is the difference between the bounds,

Hdiff = HM +
M
∑

m=1

ρmhm − h. (20)

Interestingly,Hdiff is independent of the coding rate. Hence,
once the GMM of a particular source is given, the maximum
theoretical performance loss of using the proposed LC-ECVQ
can be predicted.

By rearranging the terms,Hdiff can be written as

Hdiff = HM −
M
∑

m=1

ρmh(fm||f), (21)

where

h(fm||f) =

∫

fm(x) log2

fm(x)

f(x)
dx (22)

denotes the Kullback-Leibler distance between the component
PDF and the mixture PDF.

It is interesting to quantify the extrema ofHdiff over all pos-
sible GMM densities with the same number of mixture compo-
nents. The maximum ofHdiff can be obtained by simultane-
ously maximizingHM and minimizing

∑M

m=1 ρmh(fm||f).
We note thath(fm||f) ≥ 0 and equals zero if and only if
fm(x) = f(x) for all x. The other termHM is maximized
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when all component weights are equal. Therefore, the maxi-
mumHdiff occurs when all mixture components have the same
PDF and the same weight, and

maxHdiff = log2 M. (23)

In this case, the source has a Gaussian distribution, and using
a GMM is unnecessary.

We consider now the other extreme scenario when the
mixture components are located far from each other. In the
limit, the mixture model can be considered as a partition of the
space, for which the component PDF is non-zero only within
its own partition. The Bayesian classification error of the MAP
classifier then approaches zero. The Kullback-Leibler distance
for such a model can be approximated as

h′(fm||f) ≈
∫

fm(x) log2

fm(x)

ρmfm(x)
dx = − log2 ρm, (24)

and

H ′

diff ≈ HM −
M
∑

m=1

ρm(− log2 ρm) = 0. (25)

Therefore, for a GMM with well-separated mixture compo-
nents, Hdiff approaches zero, and the proposed LC-ECVQ
approaches the theoretically optimal performance. In the ex-
periments we observed a decreasingHdiff with increasing
separation of the GMM mixture components (see section
VIII-A).

B. Rate adjustment

Similar to GSR-ECVQ, the LC-ECVQ is rate scalable. The
target rateR can be changed to allow seamless adaptation
to, e.g., varying channel conditions. The rate scalabilityis
achieved by modifying the lattice scaling factor,c, so that
different rate-distortion operating points are obtained.

The lattice scaling factor,c, is related to the point density
function of the lattice codebook,

g′c(x) = |cG|−1. (26)

Setting the rateĤ to be equal toR, we get

c =
(

|G|2R+
∫

f(x) log2(ρm̃fm̃(x))dx
)

−
1
K

. (27)

The integral can be solved through numerical integration.
Again, the integral is independent of the coding rate, and can
be evaluated once for a given GMM density.

V. I MPLEMENTATION

In this section, we discuss implementational aspects of the
proposed LC-ECVQ, and in particular the entropy coding.
The implementation of the lattice quantizer follows standard
procedures [14], [15] (apart from truncation, cf. Section V-F).
We assume that the input data vector has been classified and
quantized according to Section III.

A. Arithmetic coding

The component index̃m and the scaled quantized vectorŷ′

are to be entropy coded. The proposed LC-ECVQ uses a spe-
cially designed arithmetic code to generate the bit sequence.
After classification, KLT, quantization and scaling, we encode
a sequence consisting of the component index and the scalar
indices of the scaled quantized vector,[m̃, ŷ′

K , . . . , ŷ′

1]. Note
that the scalar indices of̂y′ are encoded in the reverse order
for practical reasons (cf. Section V-E). In [1], the PMF of
each scalar element is computed from a conditional GMM
conditioned on the previous quantized scalar elements. In LC-
ECVQ, the scalar elements are coded independently (only
conditioned on the mixture component index), and the PMF
is computed using a Gaussian density function with zero
mean and unit variance. Therefore, the arithmetic encoder
of LC-ECVQ is expected to have a reduced computational
complexity compared to GSR-ECVQ. We show in Section
VII that the proposed arithmetic code has advantages of
reduced complexity also in the decoder and facilitates an
implementation that is less sensitive to numerical errors in
the CDF computation.

The component index is coded according to the component
weights. An implementation for theZ lattice is presented in
Sections V-B and V-C, and the extension to an arbitrary lattice
is discussed in Sections V-D and V-E. The arithmetic code for
an arbitrary lattice is based on a similar idea proposed in [1].
Since the presentation in [1] is incomplete (e.g., the decoder
details are missing), we present the implementation also for
an arbitrary lattice with detailed steps.

B. Encoding for theZ lattice

The Z lattice has the generating matrixG = I, whereI

denotes the identity matrix. The scalar elements ofŷ′ are
encoded sequentially (the reverse ordering is not requiredfor
the Z lattice case, cf. Section V-E), and the encoding of the
kth element is described here. Thekth scalar element,̂y′

k, is
located on a grid with points at integer multiples of∆k, where

∆k =
c

σk

. (28)

We use a Gaussian density function zero-mean and unit-
variance for allk. Therefore, the same CDF,Φ(·), applies
for all dimensions,

Φ(y′

k) =

∫ y′

k

−∞

1√
2π

e−
1
2

z2

dz =
1

2
erf(

1√
2
y′

k) +
1

2
, (29)

where erf(·) is the Gauss error function. Thus, the interval
[

Φ(ŷ′

k − 1
2∆k), Φ(ŷ′

k + 1
2∆k)

)

is used as the probability in-
terval for the arithmetic encoder. The erf(·) function has no
closed-form expression and needs to be evaluated using numer-
ical approximations. See Section VII-B for a discussion on the
necessary conditions for the approximatedΦ(·) function. The
practical implementation of the encoder additionally requires
rounding of the probability interval to numbers with some
predefined finite precision (see [12], [13], [27]).
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C. Decoding for theZ lattice

Decoding of the bit sequence is performed for each di-
mensionk. The bit sequence is translated to a floating point
number,ξ, between the rounded probability interval ofŷ′

k.
Since the point̂y′

k is located on the grid consisting of integer
multiples of∆k, it is possible to search among the grid points
for the one with the probability interval containingξ. This
idea is used in the decoder of GSR-ECVQ.

The use of theΦ(·) function in the encoder simplifies
the decoder in the proposed LC-ECVQ. SinceΦ(·) is a
monotonically increasing function, an inverse function of
Φ(·) exists. The inverse of theΦ(·) function can be used
to map ξ back to a point that is located near̂y′

k. If the
probability interval of ŷ′

k is not rounded, the nearest grid
point of Φ−1(ξ) can be used to obtain the decodedŷ′

k. In
a practical implementation, when the probability intervalis
rounded using finite-precision numbers, additional neighboring
points should be checked due to the rounding errors. We
propose a truncation bound in Section V-F that allows us to
restrict the search to the two nearest grid points ofΦ−1(ξ).
The decoded̂y′

k are selected to be the candidate that has the
probability interval

[

Φ(ŷ′

k − 1
2∆k), Φ(ŷ′

k + 1
2∆k)

)

containing
ξ. Compared to GSR-ECVQ, which requires on the order of
R/K times CDF computations, the decoder of LC-ECVQ has
a significantly lower computational complexity.

D. Encoding for an arbitrary lattice

The arithmetic encoding and decoding procedures for the
Z lattice can be generalized to arbitrary lattices. The differ-
ence is the approximation of the Voronoi region by hyper-
rectangular regions of the same volume to facilitate the PMF
and CDF calculations [1]. For the arithmetic encoding, the
hyper-rectangular region has lengthcgk,k in dimensionk, and
is centered at the quantized lattice vector from the lattice
codebook. This approximation is a consequence of encoding
the quantized vector as a sequence of scalar elements.

Unlike theZ lattice, thekth scalar valuêy′

k is located on a
sliding one-dimensional equally-spaced grid determined by a
step size∆k, and a dimension dependent offsetok that must
be obtained for each dimension. The grid step size∆k is
determined according to

∆k =
cgk,k

σk

. (30)

In the arithmetic encoder the offset is already given, implicitly,
by the vectorŷk that the lattice encoder provides. Therefore,
the encoder is similar to theZ lattice encoder, and the interval
[

Φ(ŷ′

k − 1
2∆k), Φ(ŷ′

k + 1
2∆k)

)

is used in the arithmetic en-
coder. However, in the decoder, the offsetok must be handled
explicitly (cf. Section V-E).

E. Decoding for an arbitrary lattice

The decoder for an arbitrary lattice is similar to the one
for the Z lattice. The main difference is that the grid is
determined by a step size∆k and an additional sliding offset
ok. Therefore, it is essential to determine the offsetok in the
decoder.

In [1], implementational details of the decoder for an arbi-
trary lattice are not presented. We here propose one solution
based on a layered decomposition of a lattice [15]. We show
that the offsetok depends on the decoded scalar values from
k + 1th to Kth dimensions, and can be obtained recursively,
starting from theKth dimension. This dependency motivates
the reverse ordering of the scalar sequence in the encoder.

We now present a recursive algorithm to obtain the offset
vectoro = [o1, . . . , oK ]T . TheKth scalar value is located on
a grid with oK = 0, due to the lower triangular form ofG
(11). Furthermore, letPK−1 be a matrix containing the upper
K − 1 rows of Gm̃ andgT

K the last row ofGm̃. Let ûK−1

be the upperK − 1 elements of̂u andûK the last element of
û. Thenŷ′ can be written as

ŷ′ = c Σ−1
m

[

PT
K−1 gK

]

[

ûK−1

ûK

]

= c Σ−1
m PT

K−1ûK−1 + c Σ−1
m gK ûK . (31)

Using this lattice decomposition,c Σ−1
m PK−1 is a generating

matrix for a lattice lying in aK−1 dimensional subspace, and
the vectorŷ′ − c Σ−1

m gK ûK is a lattice vector. The offset for
dimensionK−1 can be obtained by lettingo = c Σ−1

m gK ûK .
The offset is then given byoK−1. For other dimensions,
the generating matrix is decomposed similarly, and the offset
vector o is accumulated recursively. The process continues
until all dimensions of̂y′ have been decoded.

F. Lattice truncation

The PMF of each code-vector must be greater than a
minimum allowed probability to allow for a practical imple-
mentation on a finite-precision computer. If a 31 bit integer
is used, this threshold isδ = 2−29 [27]. Additionally, the
decoding algorithm (Section V-C) requires a bounded rounding
error in a finite-precision implementation ofΦ(·). Therefore,
for the kth dimension, we ensure that all̂y′

k are within a
truncation interval such that

1

2
(Φ(ŷ′

k +
1

2
∆k) − Φ(ŷ′

k − 1

2
∆k)) ≥ δ, (32)

is fulfilled. If Φ and its inverse are implemented using a
numerical approximation, the truncation should be applied
such that the approximatedΦ fulfills the condition (32) for
all ŷ′

k within the truncation interval.
To avoid the integration in solving the truncation interval

(32), we derive a sufficient condition of (32) based on an ap-
proximation using the lower Riemann sum. Due the symmetry
of the Gaussian PDF, we consider only the bound forŷ′

k > 0,
and the sufficient condition can be formulated as

1

2π
e−

1
2
(ŷ′

k
+

∆
k

2
)2 · ∆k ≥ 2δ. (33)

The sufficient condition (33) can be relaxed for large∆k. For
sufficiently large∆k, the truncation interval contains at least
one ∆k. Combining the two conditions, we get a sufficient
truncation interval of̂y′

k that satisfies

|ŷ′

k| ≤ max

(
√

log
∆2

k

8δ2π
− 1

2
∆k,

1

2
∆k

)

. (34)
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All ŷ′

k within the sufficient truncation interval (34) also fulfills
(32). The sufficient truncation interval (34) is used in our
implementation of LC-ECVQ.

VI. T HE ALGORITHM

In this section, the complete algorithm for the proposed
entropy-constrained lattice vector quantizer is given. Some
details related to arithmetic coding are neglected and can be
found in, e.g., [12], [13], [27].

The encoding ofx at a given average rateR follows:

1) Solve forc using (27).
2) If the lattice adaptation scheme is used, construct all

lattices according to Section III.
3) Classifyx to them̃th component using (8).
4) Encode the index̃m.
5) Sety = VT

m̃(x − µm̃).
6) Quantizey to the nearest lattice point,̂y = cGT

m̃û.
7) Setŷ′ = Σ−1

m ŷ.
8) Seto to a K-dimensional zero vector.
9) For k = K to 1 with step of−1,

a) Get the step size∆k using (30).
b) Determine the equally-spaced grid with step size

∆k and offsetok.
c) Verify that ŷ′

k is within the truncation interval
(34). If not, round to the nearest grid point in the
interval.

d) Encode ŷ′

k using the probability interval
[

Φ(ŷ′

k − 1
2∆k), Φ(ŷ′

k + 1
2∆k)

)

.
e) Seto = o + c Σ−1

m̃ ûkgk.

The decoding follows:

1) Decodem̃.
2) Seto to a K-dimensional zero vector.
3) for k = K to 1 with step of−1,

a) Get the step size∆k using (30).
b) Determine the equally-spaced grid with step size

∆k and offsetok.
c) Decode the bit sequence to a floating point number

ξ between zero and one.
d) ComputeΦ−1(ξ) using the inverse function of

(29), and find its two nearest points on the grid.
e) Setŷ′

k to one of the two grid points that has the
probability interval{Φ(ŷ′

k − 1
2∆k), Φ(ŷ′

k + 1
2∆k)}

containingξ.
f) Determineûk = (ŷ′

k − ok)/∆k.
g) Seto = o + c Σ−1

m̃ ûkgk.

4) Setx̂ = Vm̃Σm̃ŷ′ + µm̃.

VII. D ISCUSSIONS

In this section, we analyze the computational complexity of
the proposed LC-ECVQ. We also discuss the necessary con-
ditions for numerical approximation of the CDF computation
(29).

A. Computational complexity

The computational complexity of the LC-ECVQ algorithm
(Section VI) is analyzed in this section. The algorithm of
the encoder can be divided into classification, transformation,
quantization and arithmetic coding. The classification step
computes (8) for each mixture component, and the compu-
tational complexity of (8) is on the order ofO(K2) due to
the matrix multiplication. The transformation step (9) also has
a matrix multiplication and its complexity is on the order
of O(K2). The quadratically increasing complexity applies
to a GMM with full-covariance matrices. If more structured
covariance matrices are used, the complexity in the classifica-
tion and transformation steps can be reduced. The complexity
associated with the quantization depends on the lattice type.
For aZ lattice, the computational complexity isO(K). For an
arbitrary lattice, the general search algorithm of [15] canbe
used. The algorithm of [15] relies on the geometrical structure
of the lattice and its particular form of generating matrix.It has
a bounded computational complexity that is exponential with
respect to dimensionO(cK). The arithmetic coding step has
a complexity on the order ofO(K). In all encoding steps, the
computational complexity is independent of the coding rate.

For the decoder, the arithmetic coding steps have a com-
putational complexity that is on the order ofO(K). The
final transformation step requires a matrix multiplication.
Therefore, the overall complexity of the decoder is on the
order ofO(K2).

Compared to GSR-ECVQ, LC-ECVQ has lower computa-
tional complexity in both the encoder and the decoder. For
instance, the arithmetic encoder of GSR-ECVQ requires2M
times computation of erf(·) for each dimension,M times more
than LC-ECVQ. In the decoder, the GSR-ECVQ requires a
search algorithm on the order ofO(R), where each search
step involves at least one computation of erf(·). Therefore, the
decoder of GSR-ECVQ is more complex than LC-ECVQ. A
comparison in code execution time for a speech derived source
is presented in Section VIII-B.

B. Numerical approximation of the CDF computation (29)

Computing the CDF is a key step in the proposed LC-ECVQ
as well as in GSR-ECVQ. A problem is however that the erf(·)
function has no closed-form solution and has to be evaluated
using numerical approximations. The arithmetic code in GSR-
ECVQ is based on a CDF consisting of a weighted sum
of erf(·) functions. Special care is needed to handle to the
accumulated approximation error of each erf(·) function that
may lead to additionally reduced performance [1, pp. 93].

The arithmetic code of LC-ECVQ is based on a Gaussian
CDF (29),Φ(·). Compared to GSR-ECVQ, LC-ECVQ is less
sensitive to approximation errors in the CDF computation.
Proper encoding and decoding in LC-ECVQ requires 1) the
approximatedΦ(·) is a monotonically increasing function
between zero and one, 2) the same approximation is applied
in both the encoder and the decoder, such thata = Φ−1(Φ(a))
for all a, and 3) The PMF of each cell is large enough
such that the condition (32) is fulfilled for all̂y′

k within the
truncation interval. In a practical system, theΦ(·) function and
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its inverse can be implemented using a table lookup and linear
interpolation between table entries.

VIII. E XPERIMENTS AND RESULTS

In this section, we evaluate the performance of the proposed
LC-ECVQ and present the experimental results. The algorithm
was implemented according to Section VI in the Matlab
environment. The built-in Matlab function for erf(·) and its
inverse were used in our implementation. Experiments were
performed for two different types of sources: artificial sources
and one speech derived source. In each evaluation, the rates
were evaluated by counting the number of bits per source
vector using the encoded bit sequence.

A. Artificial source

Evaluation of the proposed LC-ECVQ was first performed
using artificially generated sources in a fully controlled man-
ner. For comparison, the training based ECVQ [2] was im-
plemented and evaluated as the reference system. In this
experiment, two dimensional sources were used to allow
visualization of the source. In two dimensions, the hexagonal
lattice is optimal for quantization (MSE criterion), and was
used in LC-ECVQ.

The GMMs used for generating the source vectors have four
mixture components and uniform component weights. Each
mixture component has the identity matrix as the covariance
matrix. The mean vectors are located on the corners of a cube
centered on the origin. A number of GMMs are generated
as a function of the distance between the mean vectors and
the origin. The distance, denoted asr, was considered as a
parameter specifying the degree of component separability.
Two GMM models withr = 1 and r = 3 are visualized in
Fig. 3. The GMM model withr = 1 represent the non-ideal
quantization condition as the mixture components are located
close to each other. The GMM model withr = 3 represent a
more ideal quantization condition as the mixture components
are located far apart. An evaluation data set and a training
data set (for codebook training of the reference system) are
generated for each GMM, and each data set consists of106

vectors.
For each evaluation data set, the vectors were quantized,

encoded, and decoded for various target rates. The MSE
distortion as a function of rate (per vector) is plotted in Fig.
4 for r = 1 and r = 3. For both test cases, the performance
of the reference system, the training based ECVQ, is very
close to the optimal performance predicted by the high-rate
theory (16). The proposed LC-ECVQ approaches the predicted
performance (15) for rates above around seven bits per vector.
The performance gap between the proposed LC-ECVQ and the
reference system is about one bit forr = 1 case, indicating
that the sub-optimality of the method for a GMM with heavily
overlapped components. However, if the components are well
separated, such asr = 3, the two bounds coincide and
the proposed LC-ECVQ approaches the theoretically optimal
performance at a high rate.

Next, the maximum theoretical loss of using the proposed
LC-ECVQ for a model (20) is evaluated for artificial models
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Fig. 3. Examples of a non-ideal GMM (left) and an ideal GMM (right).
The circles represent the covariance matrices and crosses the mean vectors of
GMM components. The distancer was measured between the mean vectors
and the origin. The dots are the scatter plot of the data generated from the
models.
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Fig. 4. MSE distortion as a function of rate (bits per vector)for the artificial
sources.

with different r. The loss (Hdiff ) as a function ofr is shown
in Fig. 5. The results show that the maximum loss occurs
when the distance is zero. In this case, the mixture compo-
nents completely overlap, and the loss is two bits (=log2 4
as four mixture components were used). The performance
loss decreases rapidly for increased separation of the mixture
components. Forr ≥ 3, the theoretical performance loss
is near zero, and the high-rate performance of LC-ECVQ
approaches the theoretical optimum.
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Fig. 5. Maximum theoretical loss as a function of distance tothe origin.
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lattice quantizer) as a function of rate for the LSF source.

B. Speech derived source

In this section, the proposed LC-ECVQ is evaluated using a
ten-dimensional speech line spectral frequency (LSF) source,
extracted from the TIMIT speech database using the Adaptive
Multi-Rate (AMR) speech codec [28]. The speech signals were
downsampled to 8kHz, and LSF vectors were extracted before
quantization. The training set consists of about 700000 vectors
and the evaluation set consists of 50000 vectors.

A GMM with M = 16 mixture components with full
covariance matrices was trained over the training set using
the expectation-maximization (EM) algorithm [29]. For this
model, the maximum theoretical performance loss (20) was
evaluated to be around 0.65 bits per vector. For lattice quan-
tization, we have considered theZ lattice and theD+

10 lattice
[16]. TheD+

10 lattice is the best known lattice for quantization
in ten dimensions and its normalized moment of inertia is
0.0708, compared to0.0833 for the Z lattice [16]. Therefore,
the theoretical MSE difference of the two lattice quantizers at
a high rate is about0.71 dB.

The reference systems in this experiment are the GSR-
ECVQ [4] and the resolution-constrained GMM vector quan-
tizer (GMM-RCVQ) [4] adapted to use the MSE distortion
criterion. The GMM-RCVQ is based on scalar quantization
in the transformed domain, equivalent to using a Z lattice for
quantization. For a fair comparison, the same GMM was used
in all three methods. The methods were implemented using
shared codes and similar parameter settings when possible
to minimize irrelevant performance mismatch. The training
based ECVQ [2] is excluded in this experiment due to the
unmanageable complexity and memory requirement for the
tested rates.

The MSE distortion of the quantizers was evaluated over the
evaluation set for different target rates. For clarity, theMSE
distortion was subtracted by the high-rate MSE distortion (5)
for a D+

10 lattice quantizer, and the differences as a function
of rate (per vector) are shown in Fig. 6.

GMM-RCVQ performs more than 2 dB above the high-
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Fig. 7. Average Matlab execution time (per vector) using theproposed LC-
ECVQ and GSR-ECVQ on one test computer.

rate MSE of the theoretically optimal ECVQ. At rates above
20 bits, ECVQ methods have a higher performance also in
practice. Comparing the ECVQ methods, LC-ECVQ performs
worse than GSR-ECVQ for rates higher than 26 bits for the
Z lattice. The performance difference at a high rate is less
than 0.3 dB MSE. At rates lower than 26 bits, LC-ECVQ
performs better than GSR-ECVQ, as theZ lattice vectors
of LC-ECVQ are aligned along the principal axes of each
mixture component. At 20 bits, LC-ECVQ has an MSE that
is about 0.7 dB lower than ECVQ. For theD+

10 lattice, LC-
ECVQ performs consistently worse than GSR-ECVQ, with
about 0.3 dB higher MSE. Comparing the two lattices, the
MSE differences at a high rate are about 0.7 dB for both
methods, consistent with the theory. At low rates, the MSE
difference between the two lattices decreases for the LC-
ECVQ method, which demonstrates that theD+

10 lattice is not
necessary the best lattice at low rates. Finally, using the lattice
adaptation scheme, the performance of LC-ECVQ is improved
significantly at low rates, and the MSE distortion is lower than
GSR-ECVQ with theD+

10 lattice for rates below 25 bits. The
MSE difference between theZ lattice and adaptive lattices
is almost constant, indicating the space-filling advantageof
vector quantization when the high-rate optimal (best known)
lattices are used only in those dimensions with large principal
components.

Next, the computational complexity of the two ECVQ meth-
ods are evaluated by measuring the average code execution
time (per vector) on one test computer (a Pentium 4 at 3.0
GHz running Linux). The measurements as a function of the
rate are shown in Fig. 7 for theD+

10 lattice case. The code
execution time of LC-ECVQ is almost constant for both the
encoder and the decoder. For GSR-ECVQ, it is constant for
only the encoder and increases with rate for the decoder. The
code execution time of LC-ECVQ is about 6 times lower than
GSR-ECVQ for the encoder, and 10-18 times lower for the
decoder depending on the rate.
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IX. SUMMARY AND CONCLUSION

We have proposed a new flexible and low-complexity
entropy-constrained vector quantizer, LC-ECVQ, using lat-
tice codebooks, Gaussian mixture modeling, and arithmetic
coding for the MSE distortion measure. The proposed LC-
ECVQ is a low complexity alternative to the GSR-ECVQ
proposed by Gardner, Subramaniam and Rao [1]. Compared to
GSR-ECVQ, LC-ECVQ is sub-optimal due to the component
classification and the arithmetic coding based on a Gaussian
density function. The performance bound by using the pro-
posed LC-ECVQ is derived under a high-rate assumption,
and the theoretically loss is quantified for a given GMM
density. We observed in our experiments that the loss decreases
with increased separation of the GMM mixture components.
For a ten-dimensional speech LSF source, the maximum
theoretical loss is 0.65 bits per vector. This suboptimality was
demonstrated experimentally for the same source, where GSR-
ECVQ achieved up to 0.3 dB lower MSE distortion than the
proposed LC-ECVQ for rates above 25 bits per vector.

The advantages of the proposed LC-ECVQ over GSR-
ECVQ are three-fold. First, the proposed LC-ECVQ has a
computational complexity that is independent of the coding
rate in both the encoder and the decoder (the decoder com-
plexity of GSR-ECVQ increases linearly with rate). In the
LSF quantization experiment, the code execution time of LC-
ECVQ is 6 times lower than GSR-ECVQ in encoding, and
10 to 18 times lower in decoding depending on the rate. The
reduced complexity is due to the simplified arithmetic coding
design based on a Gaussian density function. Second, the pro-
posed LC-ECVQ facilitates a better performance at low rates,
when the source exhibits vanishing dimensions (the high-rate
assumption is violated in these dimensions). The proposed
LC-ECVQ has the possibility of applying different lattices
for different component quantizers depending on the local
behavior of the source. We have proposed a heuristic lattice
adaptation scheme in which the near-vanishing dimensions
(e.g., low eigenvalues compared to the MSE) are quantized
using theZ lattice. The remaining dimensions are quantized
using the best-known lattice in that dimension [16]. Applied
to the LSF source, the LC-ECVQ using lattice adaptation
achieves better performance than GSR-ECVQ using theD+

10

lattice [16] for rates below 25 bits. Finally, the proposed LC-
ECVQ is less sensitive to approximation errors in the CDF
computation, which simplifies the implementation on a finite-
precision computer.

We conclude that, for the LSF source, the performance
of the proposed LC-ECVQ is at least comparable to GSR-
ECVQ at rates relevant for speech coding (20-28 bits per vec-
tor), whereas the computational complexity is much reduced.
The proposed LC-ECVQ can be applied to other sources
by adapting the GMM to the new data. An evaluation of
the maximum theoretical loss (21) can give an indication of
the performance. The performance will be competitive if the
mixture components are sufficiently separated.
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