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Abstract—A flexible and low-complexity entropy-constrained scalable, and works over a large range of rates without thd ne
vector quantizer (ECVQ) scheme based on Gaussian mixture of retraining the codebooks. For communication channets wi

models (GMMs), lattice quantization, and arithmetic coding is errors, such a method facilitates rate-adaptation acogrtti
presented. The source is assumed to have a probability demnsi ' "
the channel condition.

function of a GMM. An input vector is first classified to one ) ) -
of the mixture components, and the Karhunen-La@ve transform Rate-independent complexity and rate-scalability amraett
of the selected mixture component is applied to the vector, tive features also for an ECVQ. It has been shown that, at a

followed by quantization using a lattice structured codebok. high rate, the quantization point density of an optimal ECVQ
Finally, the scalar elements of the quantized vector are enbpy is uniform for a source with finite differential entropy [9],

coded sequentially using a specially designed arithmeticoder. . . . L . )
The computational complexity of the proposed scheme is low, [10]. This theoretical result in combination with Gersho’s

and independent of the coding rate in both the encoder and conjecture [11] form the main motivation for the usage of
the decoder. Therefore, the proposed scheme serves as a lowea lattice structured codebook for vector quantizationofetd

complexity alternative to the GMM based ECVQ proposed by py entropy coding using, e.g., an arithmetic code [12], [13]
Gardner, Subramaniam and Rao [1]. The performance of the g reqylar structure of a lattice facilitates closesnpsearch

proposed scheme is analyzed under a high-rate assumptionné . o . ) .
quantified for a given GMM. The practical performance of the algorithms (quantization) with low computational comptgx

scheme was evaluated through simulations on both synthetand ~ €.9, [14] for classical lattices and [15] for arbitrary iegts.
speech line spectral frequency (LSF) vectors. For LSF quaita- For a tutorial on the “best known” lattices for quantization
tion, the proposed scheme has a comparable performance to][1 see [16].
fgwrg:esorrﬁ'e‘;a?t forl Speeclh coding (20-28 bits per vector) #h  \yhjje the lattice structure simplifies the codebook design,
putational complexity. the subsequent step of generating the variable-length bit

Index Terms—Entropy constrained, vector quantization, VQ, sequence, is a non-trivial task for an ECVQ. A traditional

lattice, Gaussian mixture model, GMM, arithmetic coding arithmetic code is based on the probability mass function
(PMF) of the code vectors, e.g., obtained through a histogra
. INTRODUCTION and the cumulative distribution function (CDF) according t

It is well-known that an entropy-constrained vector quar’?— paftic‘_“af ordering (_)f the vect_ors. Two criticql diffidek
tizer (ECVQ) achieves better rate-distortion performarmma- 2PP€ar in such a design at a high rate [17]. First, the PMF
pared to a resolution-constrained vector quantizer (RCvcorage and the CDF computation become infeasible as the
This is due to the flexibility of assigning bit sequences dtumber of code vectors increases exponentially with rate.

different lengths to different code vectors according te tr>econd, as the volumes of the quantization cells shrink, the
probability of their appearance. However, classical codip 2vailable data may not provide a PMF estimate with enough

training based ECVQ has been limited to low-rate vect§iccuracy. Popatand Picard proposed a solution, mainhéor t
quantizers (VQ), e.g. [2], because of the exponentiallygas- second problem, using a GMM for describing the source PDF

ing computational complexity and memory requirements féf /1: [18]. Their solution is designed for quantizationngia

higher rates. Z lattice qnd a GMM with dlagongl covariance matrices. Since
Gaussian mixture modeling has been successfully applied§ €PF is computed by summation over the PMF (computed

RCVQ, e.g., [3]-[7]. A Gaussian mixture model (GMM) hadrom the GMM), the computational complexity of [17], [18]

the form of a weighted sum of Gaussian density functions, afipws exponentially With rate. Another solution is propmse )
is suitable for modeling of real-world sources with an unkno Y Gardner, Subramaniam and Rao [1], and we refer to their

probability density function (PDF). The GMM parameter§CVQ @ GSR-ECVQ. In GSR-ECVQ, a scalar conditional
can be optimized for a source using a training database [8PProximation is proposed, for which the PMF and CDF are
Applied to RCVQ, the method of [4] achieves good ratecOmputed sc_:alar—W|se, and conditioned on past scalar elsme
distortion performance, with a low computational comptgxi of the qu_antlzeql v_ector. The GSR'EC_VQ has a computat_lonal
In particular, the computational complexity of the methsd icomplexity that is independent of rate in the encoder arehlin

independent of the coding rate, making vector quantizatidh "€ in the decoder. The GSR-ECVQ also generalizes the
at a high rate feasible. The method of [4] is additionall}eratm

ethod of [17], [18] by allowing for lattices other than tie
lattice, and a GMM with full covariance matrices.
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""""""""""" Y > 2 P(X)L(%x), where/(x) denotes the codeword length &f

< f* Transform [ Quantization \i . The optimal variable-rate code has an average rate appngach
: ntropy N
7P Coding —» the entropy ofx,
"o\ Transform |- Quantization 3 Hiower = — Z p(X)log, p(%). (2)
- %
m m Using an entropy code such as the arithmetic code [12], [13],

Classifier this rate can be approached arbitrarily closely by increpsi
the sequence length.

The optimal ECVQ has a quantization point density function
g.(x) that minimizes the average distortioR, under the
constraint that the entrop¥ower €quals a desired target rate
minimizes the extended criterion

Fig. 1. Schematic diagram of a GMM-based classified ECVQ.

schematic diagram of such a scheme is shown in Fig. 1. THe The optimalg.(x)
idea of a GMM-based classified ECVQ has appeared in the n = D+ X(Hpower— R), (©)]

theoretical works of [19], [.201' Howeyer, a crucial compane where\ is the Lagrange multiplier for the entropy constraint.

of such a design, a practically feasible entropy code, has Yhe goal of this work is to design a flexible and low com-

yet begn reported. . plexity ECVQ that performs closely to a system with the
In this paper, we propose a low-complexity ECVQ (chheoreticall optimaly. (x)

ECVQ) based on a classified VQ [19], [20] that enables the yop e

use of a, compared to [1], more practical arithmetic cod@ Tig High-rate ECVQ

proposed LC-ECVQ has a further reduced complexity than

; The optimization problem (3) can be solved under a high-
GSR-ECVQ at the cost of lower performance at high rates. }gte assumption, which implies that the data PDF is constter

particular, the LC-ECVQ has a computational complexity thaniform within the boundary of a quantization cell. Assumin

is independent of rate both in the encoder and the dec"‘fﬁ%\t the source has a finite differential entropy, denoted by

The reduced complexity is mainly due to the simplified arith: . .
metic code design, which has the additional advantage of |rtegan be shown that the optimal(x) is a constant [11], [3],

duced sensitivity to numerical errors in the CDF computatio ge =287 (4)

Furthermore, the proposed LC-ECVQ has the possibility &ie theoretical result implies that, at a high rate, unifigrm
applying different lattices for different component quaets isyributed quantization points are optimal if the poirdies
depending on the local behavior of the source. This is uselis sypsequently coded using an entropy code. This result is
for sources that are likely to contain vanishing dimensiofe main motivation for using a lattice structured codebook
[21]-[23] (the high-rate assumption is violated in thes@eh- i an entropy-constrained quantizer. A high-rate ECVQ for a
sions). We propose a lattice adaptation scheme for LC-ECV{dn,_gifference distortion measure is discussed in [24].[2

that adapt the lattice of each mixture component depending o Using a lattice quantizer, the MSE distortidh at a high
the coding rate. We show experimentally for a speech derivege is approximately [11]

source that LC-ECVQ with lattice adaptation achieves bette

2
performance at low rates than GSR-ECVQ with a fixed lattice. D =~ Cgge*™, (5)
whereCg is the normalized moment of inertia of the quanti-
[l. PRELIMINARIES zation cell shape, defined by
In this section, the notation and the problem formulation Cr 1 xi2 <124 6
are first introduced. We then review the classical resulhef t K= 379 @) [l — %|["dx, ®6)
optimal ECVQ at a high rate. Finally, the signal model usin o . . o
a GMM is presented. for the quantization cell shap®(x) of a lattice pointx.
C. Gaussian mixture modeling
A. Problem formulation Throughout the remainder of this paper we assumeftpal
Let x = [z1,...,2x]7 denote aK-dimensional vector is a GMM density withA/ mixture components,
drawn from a vector stationary random source, and= M
[#1,...,2x]T denote the corresponding vector after quanti- fx) = Z P fm (X), (7)
zation. Let f(x) denote the PDF ok, and p(x) denote the m=1
PMF of x. wherem denotes the component indgx,, denotes the mix-

In this paper, we consider the mean square error (MSE) @ge weight of then'th component, and’,,(x) is a component
the average distortion), between the original and quantizedsaussian PDF with meam,, and covariance matrib,,,. Let

variable, ) D,, = V,,22 VL be the eigenvalue decomposition, where
D= _/f(x)||x — %||*dx. (1) X7, = diago?,...,0%] is a diagonal matrix consisting of
K the eigenvalues db,,,. V1 is a decorrelating transform, also

The quantized vectors are coded using a variable-réeown as the Karhunen-Loeve transform (KLT), of theh
code. The average rate of the generated bit streaf is mixture component.



I1l. LC-ECVQ ALGORITHM The classification (8), transform (9) and scalings (12-13)

The proposed LC-ECVQ encoding is a two step procedur%?ame a simplified design of the arithmetic code. For a GMM
First, the input vectok is classified to one mixture componentVith sufficiently separated mixture components, a Gaussian
with index 7. Next, x is quantized tak using themth per- PDF with zero mean and identity covariance matrix approxi-
component quantizer. Both the component indexand the Mates the PDF of’ well, and this is exploited in the entropy

quantized vectok are to be coded using an arithmetic codet0ding of the quantized and scafgtivector. Details regarding
the encoding and decoding of the arithmetic code are given in

A. Classification Section V.

In LC-ECVQ, a maximum a posteriori (MAP) classifier is ) )
used to determine the index of the mixture compongntio C- Lattice selection
which the data vectox most likely belongs to, In LC-ECVQ, different lattices can be used in different com-
ponent quantizers. At a high rate and for a fixed dimension,
the optimal lattice for quantization has the lowest norzei

The MAP classifier selects the per-component quantizer fgoment of inertia among all lattices. The best known lastice
quantization of the data vector. An alternative classifietoi 0" dimensions up to ten are listed in [16]. However, those
minimize a weighted sum of rate and distortion in a Lagrand@ilices are not necessarily the best at low rates. In paatic
formulation [19], [20]. The MAP classifier is used in LC-Many sources derived from speech and images are likely to

ECVQ for two main reasons. First, the Lagrange formulatigfPnt&in vanishing dimensions [21]-{23], and a GMM of such
would require quantization using all component quantigiens & Source may have mixture components with some near-zero
distortion computation), which increases the computatiorP"incipal components. When an eigenvalue corresponding to
complexity. Second, if the mixture components are suffityen @ Principal component is small compared to the quantizer
separated, the additional distortion term mainly affetts tSteP Size, the assumption of high-rate does not apply to this
code vectors near the class boundaries, and their coneributdimension, and the best known lattice from [16] may not be
to the overall performance is expected to be low. We furthf}e best choice for this rate. o . _
show in Section IV that the MAP classifier based solution !N LC-ECVQ, we propose a heuristic lattice adaptation

has a bounded worst-case performance, which can be useddeme for a given rate. For each mixture component, the
determine the expected performance of LC-ECVQ. eigenvalues are compared to a constant experimentallpset t
2D, where the high-rate distortioP is computed using (5)

o using the best-knowrk -dimensional lattice from [16]. The
B. Transform and quantization e dimensions that have eigenvalues less than the constant
We transformx by subtracting the mean, and applying th@re quantized using the lattice. The remainingk — ¢
KLT of the rath mixture component before lattice quantizationgimensions are quantized using the best-known lattide ine
v=VT(x - pm). 9) gimens_ions (the generating matrices are normalized to thave
eterminants equal to one) [16].
The transformed variablg is then quantized to the closest Fig. 2 shows a low-rate quantization example for a 2-

m = argmax p(m|x) = argmax p,, fm(x). (8)

code vector neighbor in a lattice structured codebook.  dimensional source with one near-zero principle companent
A lattice A is generated through a scaled generating matrior this example, the LC-ECVQ with th&, lattice performs
G: better than with theds (hexagonal) lattice, with both a lower
A={cGTu:uez, (10) distortion and a lower rate. The lower distortion is because

that the code vectors using tti& lattice are denser on the
wherec is a scaling factor, ané is the generating matrix of diagonal. The lower rate is because that the code vectors off
the form (without losing generality [15]) the diagonal (using thd, lattice) are coded using much lower
probabilities. The example provides an intuitive explarabf

g 0 8 using theZ lattice in dimensions with small eigenvalues.
G = 92"1 92_’2 o : (11)  In the K-dimensional space, the lattice adaptation scheme
: : . : corresponds to quantization using a hybrid lattice, foraluhi
g1 9,2 --- 9K K the generating matrix are merged from the ¢ dimensional

identity matrix and thé K — ¢) x (K — ¢) dimensional lattice
generating matrix. The hybrid generating matrices can be
computed off-line. Therefore, the lattice adaptation sohe
is not associated with any additional computations contpare
to using a traditional lattice. We show experimentally in
Section VIII-A that the lattice adaptation scheme signiitta
y =3y, (12) improves the LC-ECVQ performance at low rates.

The high-rate optimal quantization point density (4) moti-
vates the use of lattices with same cell volumes in all mixtur
v =cZ'GLa (13) component (a proof is given in [19], [20]). Therefore,is

with positive diagonalsy;, ;. We further assume thak is
normalized such that the determinant is one.

The quantized vector using th&th lattice codebook is
given byy = ¢ GL 4, for a particulara. We further normalize
y by the square root of the eigenvalues,

and the quantized vector is scaled similarly,



Zy lattice Ay lattice 1) Lower bound:The lower performance bound is straight-

2 2 G i .
o ?-O forward. Sincef(x) > p,, fm(x) for all m and using (4), we

o1 o o1 have
§ o § o H > —/f(x) log, f(x)dx + log, ge
5 5 = h+log, ge ~ Hiower (16)

- vO‘ -_

O.O’" o which is the entropy ok under a high-rate assumption.
2o 1 2 2% O_l o1 2 2) Upper bound: The upper performance bound can be
Dimension 1 Dimension 1 derived for the MAP classifier, whergs, f(x) > pm, fin (X)

for all m. We then have

Fig. 2. Examples of quantization of a source with vanishimgeshsions using

M
LC-ECVQ based on th&- lattice and thed. lattice (hexagonal lattice). The [ ~ — / Z P fm(X) 108y (pi [ (X)) dx + 10gs g
circles are the quantized vectors using the two lattices. oo’

M
. _ . < - / > pmfn (%) 1085 (pm fn (X)) dx + logy ge
considered as a constant for a givenand the same is used m=1
in all component quantizers. M
= Hy+ Z Pmhm +10gs gc £ Hypper, (17)
m=1
IV. THEORETICAL ANALYSIS where
M
The performance of the proposed LC-ECVQ is analyzed Hy = — Z pm 1085 P (18)
theoretically under a high-rate assumption. Neglectingtréo — ’

butions from quantization cells located on the classifirati . .
boundaries, the MSE distortion is given by (5) at a high raté, the entropy of the component index, and

The rate of LC-ECVQ and its lower and upper bounds are [ —/f (x) logy fn(x)dx
derived in this section. We show that the performance loss du " " 2
e . 1
to classn‘|cat|c_)n can be predicted, _and the loss approames z — Zlog, ((279)K|Dm|) ’ (19)
for a GMM with well-separated mixture components. Finally, 2

we discuss the optimization of the quantizer for different the differential entropy of thenth Gaussian component,

target rates. The analysis of this section does not applggo with | - | denoting the determinant.

lattice adaptation scheme (which is a low-rate optimizgiio 3) Performance predictionSince the rate of the proposed

and assumes that the same lattice is used in all mixture-ECVQ is bounded, the maximum theoretical loss for a

components. GMM density is the difference between the bounds,
M
Hat = Hy+ ) pmho —h. (20)
A. Rate performance m=1

In the proposed LC-ECVQ, both the component index Interestingly, Hyir is inde_pendent of th_e ching rate. Hgnce,
and the quantized vectct are entropy coded. The averag®"ce the GMM of a particular source is given, the maximum

rate is given by theoretical p_erformance loss of using the proposed LC-ECVQ
can be predicted.
q - _ Zp(fc)(logz pin + 10gy pin (%)), (14) By rearranging the termdig can be written as
% M

_ _ _ Hyr = Hy— Y pmh(fmllf), (21)
where p;; is the weight of then’th mixture component and m—1
P (X) = f5(5<) fm(x)dx is the PMF ofx using them'th | pare
component PDF. Under a high-rate assumptiéh,can be Fm(x)
approximated by, e.g., [26], hfmllf) = /fm(x) log, ) dx (22)

- denotes the Kullback-Leibler distance between the co ne
H o~ _/f(x) log, (pinfin(x)) dx +10g, ge; (15)  ppE and the mixture PDF. e
Itis interesting to quantify the extrema éffyx over all pos-
where g. = vol(x)~! denotes the inverse volume of thesible GMM densities with the same number of mixture compo-
guantization cell forx. The integral of (15) can be solvednents. The maximum ofig can be obtained by simultane-
through numerical integration. The integral is independagn ously maximizing Hy; and minimizingznj\f:1 P (fnllf)-
the coding rate, and can be evaluated once for a given GMMe note thath(f,,||f) > 0 and equals zero if and only if
density. fm(x) = f(x) for all x. The other termH,; is maximized



when all component weights are equal. Therefore, the ma®i- Arithmetic coding
mum Hgz occurs when all mixture components have the same

PDF and the same weight, and The component index: and the scaled quantized vecggr

are to be entropy coded. The proposed LC-ECVQ uses a spe-
(23) cially designed arithmetic code to generate the bit secrienc
After classification, KLT, quantization and scaling, we ede
In this case, the source has a Gaussian distribution, and usk sequence consisting of the component index and the scalar
a GMM is unnecessary. indices of the scaled quantized vectpf,, g%, . .., 9}]. Note
We consider now the other extreme scenario when tHeat the scalar indices gf’ are encoded in the reverse order
mixture components are located far from each other. In tf@ practical reasons (cf. Section V-E). In [1], the PMF of
limit, the mixture model can be considered as a partitiornef t €ach scalar element is computed from a conditional GMM
space, for which the component PDF is non-zero only withgpnditioned on the previous quantized scalar elementsCin L
its own partition. The Bayesian classification error of tham® ECVQ, the scalar elements are coded independently (only

classifier then approaches zero. The Kullback-Leibleadist conditioned on the mixture component index), and the PMF
for such a model can be approximated as is computed using a Gaussian density function with zero

mean and unit variance. Therefore, the arithmetic encoder
fm(x) I e — g, p (24) of LC-ECVQ is expected to have a reduced computational
P frm(X) 2 im complexity compared to GSR-ECVQ. We show in Section
VII that the proposed arithmetic code has advantages of

max Hdif-f = 1Og2 M.

fm”f /fm 10g2

and reduced complexity also in the decoder and facilitates an
M implementation that is less sensitive to numerical errars i
Hie ~ Hyr =Y pm(—1085 pm) = 0. (25) the CDF computation.
m=1 The component index is coded according to the component

Therefore, for a GMM with well-separated mixture compoweights. An implementation for th& lattice is presented in
nents, Hy approaches zero, and the proposed LC-ECV@ections V-B and V-C, and the extension to an arbitrarydeaiti
approaches the theoretica”y 0ptima| performance_ In the éS discussed in Sections V-D and V-E. The arithmetic code for
periments we observed a decreasiﬁ'giﬁ with increasing an arbitrary lattice is based on a similar idea proposed]in [1

separation of the GMM mixture components (see sectiéfince the presentation in [1] is incomplete (e.g., the decod
VIII-A). details are missing), we present the implementation also fo

an arbitrary lattice with detailed steps.

B. Rate adjustment

Similar to GSR-ECVQ, the LC-ECVQ is rate scalable. Th
target rateR can be changed to allow seamless adaptationThe Z lattice has the generating matr®& = I, wherel
to, e.g., varying channel conditions. The rate scalability denotes the identity matrix. The scalar elementsybfare
achieved by modifying the lattice scaling facter, so that encoded sequentially (the reverse ordering is not reqdoed

g. Encoding for theZ lattice

different rate-distortion operating points are obtained. the Z lattice case, cf. Section V-E), and the encoding of the
The lattice scaling factog;, is related to the point density kth element is described here. Thth scalar elementy;, is
function of the lattice codebook, located on a grid with points at integer multiples®f, where
ge(x) = |G| . (26) Ap =2 (28)
Ok

Setting the rate to be equal taR, we get . . . .
9 q g We use a Gaussian density function zero-mean and unit-

= variance for allk. Therefore, the same CDR(-), applies

= (|G|2R+j f(x) logz(PﬁLfﬁL(X))dx)_K ) (27) for all dimensions
The integral can be solved through numerical integration. ) Yo 1 s 1 1,1
Again, the integral is independent of the coding rate, and ca P (vi,) = / Eeﬁz dz = §erf(ﬁyk) +t3, (29

be evaluated once for a given GMM density.

where erf-) is the Gauss error function. Thus, the interval
[®(5), — Ak), ®(F, + 2Ar)) is used as the probability in-
terval for the arithmetic encoder. The jffunction has no

In this section, we discuss implementational aspects of thiwsed-form expression and needs to be evaluated usingrnume
proposed LC-ECVQ, and in particular the entropy codingcal approximations. See Section VII-B for a discussion o t
The implementation of the lattice quantizer follows staxdanecessary conditions for the approximafied) function. The
procedures [14], [15] (apart from truncation, cf. Sectiofr)V practical implementation of the encoder additionally riegg
We assume that the input data vector has been classified amghding of the probability interval to numbers with some
guantized according to Section Il predefined finite precision (see [12], [13], [27]).

V. IMPLEMENTATION



C. Decoding for theZ lattice In [1], implementational details of the decoder for an arbi-

Decoding of the bit sequence is performed for each drary lattice are not presented. We here propose one solutio

mensionk. The bit sequence is translated to a floating poif@sed on a layered decomposition of a lattice [15]. We show
number,¢, between the rounded probability interval f. that the offsetr, depends on the decoded scalar values from

Since the pointj,, is located on the grid consisting of integef + 1th to K'th dimensions, and can be obtained recursively,

multiples of Ay, it is possible to search among the grid pointgtartlng from thel_{th dimension. This depend_ency motivates

for the one with the probability interval containing This the reverse ordering of the scalar sequence in the encoder.

idea is used in the decoder of GSR-ECVQ. We now present a recursive algorithm to obtain the offset
The use of thed(-) function in the encoder simplifies VECtOro = [o1,..., 0x]". The K'th scalar value is located on

the decoder in the proposed LC-ECVQ. Sindé-) is a @ grid with ox = 0, due to the Iowe_r trlangl_JIa_lr form of&x

monotonically increasing function, an inverse function dfll). Furthermore, IePK,% be a matrix containing th? upper

() exists. The inverse of the(-) function can be used X — 1 rows of G;; andgj, the last row ofGp. Let ix

to map ¢ back to a point that is located negf. If the be the uppers — 1 elements ofi andu the last element of

probability interval ofj; is not rounded, the nearest gridd- Theny’ can be written as

point of <I>*_1(§) can be_used to obtain the d_e_coqgg In S sl (pT U1

a practical implementation, when the probability interisl y = ¢&an [ K-1 gK] K

rounded using finite-precision numbers, additional nedgiy _ ApT - 1

points should be checked due to the rounding errors. We = ¢X, Py g 1+cX 'grix. (31)

propose a truncation bound in Section V-F that allows us tgsing this lattice decomposition, X 'P _, is a generating

restrict the search to the two nearest grid pointsbof' (¢). matrix for a lattice lying in ak —1 dimensional subspace, and

The decoded); are selected to be the candidate that has tiige vectory’ — ¢ X 'g ik is a lattice vector. The offset for

probability interval [®(g;, — 5Ax), ®(J;, + 3Ar)) containing  dimensionk — 1 can be obtained by letting = ¢ 33, 'g it .

. Compared to GSR-ECVQ, which requires on the order ghe offset is then given byx_;. For other dimensions,

R/K times CDF computations, the decoder of LC-ECVQ hage generating matrix is decomposed similarly, and theebffs

a significantly lower computational complexity. vector o is accumulated recursively. The process continues

until all dimensions ofy’ have been decoded.

D. Encoding for an arbitrary lattice
The arithmetic encoding and decoding procedures for the Lattice truncation

Z lattice can be generalized to arbitrary lattices. The diffe The PMF of each code-vector must be greater than a
ence is the approximation of the Voronoi region by hypeminimum allowed probability to allow for a practical imple-
rectangular regions of the same volume to facilitate the PMfrentation on a finite-precision computer. If a 31 bit integer
and CDF calculations [1]. For the arithmetic encoding, thg used, this threshold i§ = 229 [27]. Additionally, the
hyper-rectangular region has lengi). . in dimensionk, and  decoding algorithm (Section V-C) requires a bounded ronmdi

is centered at the quantized lattice vector from the lattiggror in a finite-precision implementation df(.). Therefore,

codebook. This approximation is a consequence of encodiigg the kth dimension, we ensure that alj, are within a
the quantized vector as a sequence of scalar elements.  truncation interval such that

Unlike the Z lattice, thekth scalar valuej;, is located on a 1 1 1
sliding one-dimensional equally-spaced grid determined by a §(<I>(:Qk + iAk) - O(y, — §Ak)) > 9, (32)
step sizeA, and a dimension dependent offggtthat must

be obtained for each dimension. The grid step sizg is is fulfilled. If ® and its inverse are implemented using a
determined according to numerical approximation, the truncation should be applied

such that the approximated fulfills the condition (32) for
(30) all g;, within the truncation interval.
To avoid the integration in solving the truncation interval
In the arithmetic encoder the offset is already given, igifli, (32), we derive a sufficient condition of (32) based on an ap-
by the vectorg,. that the lattice encoder provides. Thereforgyroximation using the lower Riemann sum. Due the symmetry
the encoder is similar to th# lattice encoder, and the intervalof the Gaussian PDF, we consider only the boundgfor> 0,

[©(7), — 2Ak), (3, + 3Ak)) is used in the arithmetic en- and the sufficient condition can be formulated as
coder. However, in the decoder, the offsgtmust be handled 1

COk,k
o

Ay =

ici i — 1+’
explicitly (cf. Section V-E). %e 2WeT2N) Ay > 20, (33)
) _ ) The sufficient condition (33) can be relaxed for laryg. For
E. Decoding for an arbitrary lattice sufficiently largeAy, the truncation interval contains at least

The decoder for an arbitrary lattice is similar to the onene A;. Combining the two conditions, we get a sufficient
for the Z lattice. The main difference is that the grid igruncation interval ofj; that satisfies
determined by a step siz&; and an additional sliding offset A . .
or. Therefore, it is essential to determine the offsgtin the 17, < max /log 2k CCAL AL L (39)
decoder. 8%r 2 72



All g5, within the sufficient truncation interval (34) also fulfillsA. Computational complexity

_(32). The SL_Jfficient truncation interval (34) is used in our The computational complexity of the LC-ECVQ algorithm
implementation of LC-ECVQ. (Section VI) is analyzed in this section. The algorithm of
the encoder can be divided into classification, transfoionat
guantization and arithmetic coding. The classificationp ste
computes (8) for each mixture component, and the compu-

In this section, the complete algorithm for the proposé@tional complexity of (8) is on the order @?(K?) due to
entropy-constrained lattice vector quantizer is givenmgo the matrix multiplication. The transformation step (9)aatss
details related to arithmetic coding are neglected and @n & Matrix multiplication and its complexity is on the order

VI. THE ALGORITHM

found in, e.g., [12], [13], [27]. of O(K?). The quadratic_ally increa_sing complexity applies
The encoding ok at a given average rate follows: to a GMM with _full-covarlance matrices. If_ more structur_e_d
covariance matrices are used, the complexity in the claasifi
1) Solve forc using (27). tion and transformation steps can be reduced. The comyplexit
2) If the lattice adaptation scheme is used, construct alsociated with the quantization depends on the lattice. typ
lattices according to Section IIl. For aZ lattice, the computational complexity i3(K). For an
3) Classifyx to thernth component using (8). arbitrary lattice, the general search algorithm of [15] ¢&n
4) Encode the indexn. used. The algorithm of [15] relies on the geometrical street
5) Sety = VI (x — pn). of the lattice and its particular form of generating mattias
6) Quantizey to the nearest lattice poin, = ¢cG, u. a bounded computational complexity that is exponentiah wit
7) Sety' =% 'y. respect to dimensio®(c€). The arithmetic coding step has
8) Seto to a K-dimensional zero vector. a complexity on the order aD(K). In all encoding steps, the
9) Fork = K to 1 with step of-1, computational complexity is independent of the coding.rate
a) Get the step siz&; using (30). For the decoder, the arithmetic coding steps have a com-
b) Determine the equally-spaced grid with step sizeutational complexity that is on the order ¢i(K). The
Ay and offsetoy. final transformation step requires a matrix multiplication

c) Verify that g; is within the truncation interval Therefore, the overall complexity of the decoder is on the
(34). If not, round to the nearest grid point in therder of O(K?).

interval. Compared to GSR-ECVQ, LC-ECVQ has lower computa-
d) Encode g, using the probability interval tional complexity in both the encoder and the decoder. For
[@(9), — $Ak), @(3), + 3A%)). instance, the arithmetic encoder of GSR-ECVQ requxks
e) Seto = o0+ ¢ X, gk times computation of eff) for each dimension)/ times more

than LC-ECVQ. In the decoder, the GSR-ECVQ requires a

The decoding follows: search algorithm on the order @#(R), where each search

1) Decodern. step involves at least one computation of{ erfTherefore, the
2) Seto to a K-dimensional zero vector. decoder of GSR-ECVQ is more complex than LC-ECVQ. A
3) for k = K to 1 with step of—1, comparison in code execution time for a speech derived sourc

a) Get the step siz&,, using (30). is presented in Section VIII-B.

b) Determine the equally-spaced grid with step size

Ay and offsetoy. B. Numerical approximation of the CDF computation (29)
c) Decode the bit sequence to a floating point numberComputing the CDF is a key step in the proposed LC-ECVQ
¢ between zero and one. as well as in GSR-ECVQ. A problem is however that thé-grf

d) Compute®~(¢) using the inverse function of fnction has no closed-form solution and has to be evaluated
(29), and find its two nearest points on the grid. ,sing numerical approximations. The arithmetic code in GSR

e) Setyj, to one of the two grid points that has thecvQ is based on a CDF consisting of a weighted sum
probability interval{ ®(g;, — 3Ak), @3, +38%)}  of erf(-) functions. Special care is needed to handle to the

containing¢. accumulated approximation error of each(grfunction that
f) Determined, = (y;;c — o)/ Dg. may lead to additionally reduced performance [1, pp. 93].
9) Seto=o+c X, gk The arithmetic code of LC-ECVQ is based on a Gaussian
4) Setx = Vi X5y + M. CDF (29),%(+). Compared to GSR-ECVQ, LC-ECVQ is less

sensitive to approximation errors in the CDF computation.
Proper encoding and decoding in LC-ECVQ requires 1) the
VIl. DISCUSSIONS approximated®(-) is a monotonically increasing function
between zero and one, 2) the same approximation is applied
In this section, we analyze the computational complexity @i both the encoder and the decoder, suchdhat® ! (®(a))
the proposed LC-ECVQ. We also discuss the necessary ctor- all ¢, and 3) The PMF of each cell is large enough
ditions for numerical approximation of the CDF computatiosuch that the condition (32) is fulfilled for afl;, within the
(29). truncation interval. In a practical system, #hé ) function and



its inverse can be implemented using a table lookup andrlinea r=1 r=3
interpolation between table entries.

VIIl. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of the proposec
LC-ECVQ and present the experimental results. The algorith
was implemented according to Section VI in the Matlab
environment. The built-in Matlab function for érf and its e
inverse were used in our implementation. Experiments were -4-3-2-10123 4 -4-3-2-1 012 3 4
performed for two different types of sources: artificial sms Dimension 1 Dimension 1
and one speech derived source. In each evaluation, the rates

were evaluated by counting the number of bits per sourEe. 3. Examples of a non-ideal GMM (left) and an ideal GMMglt).

; ; The circles represent the covariance matrices and crdssendan vectors of
vector using the encoded bit sequence. GMM components. The distaneewas measured between the mean vectors
and the origin. The dots are the scatter plot of the data ge&terfrom the
models.

Dimension 2
Dimension 2
o
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A. Atrtificial source

Evaluation of the proposed LC-ECVQ was first performed
using artificially generated sources in a fully controlledmn Rate vs. Distortiony = 1 andr = 3
ner. For comparison, the training based ECVQ [2] was im- ‘ ‘ ‘
plemented and evaluated as the reference system. In this
experiment, two dimensional sources were used to allow -5+
visualization of the source. In two dimensions, the hexagon
lattice is optimal for quantization (MSE criterion), and sva
used in LC-ECVQ. @-

The GMMs used for generating the source vectors have four
mixture components and uniform component weights. Each £ -
mixture component has the identity matrix as the covariance
matrix. The mean vectors are located on the corners of a cube
centered on the origin. A number of GMMs are generated _3o
as a function of the distance between the mean vectors anc
the origin. The distance, denoted aswas considered as a —35
parameter specifying the degree of component separability
Two GMM models withr = 1 andr» = 3 are visualized in
Fig. 3. The GMM model withr = 1 represent the non-ideal _ S . . o
guantization condition as the mixture components are éata scl)%rgés.MSE distortion as a function of rate (bits per vecfor)the artificial
close to each other. The GMM model with= 3 represent a
more ideal quantization condition as the mixture compament
are located far apart. An evaluation data set and a training
data set (for codebook training of the reference system) avéh differentr. The loss Hyir) as a function ofr is shown
generated for each GMM, and each data set consist$df in Fig. 5. The results show that the maximum loss occurs
vectors. when the distance is zero. In this case, the mixture compo-

For each evaluation data set, the vectors were quantizadnts completely overlap, and the loss is two bitsogz4
encoded, and decoded for various target rates. The MS8E four mixture components were used). The performance
distortion as a function of rate (per vector) is plotted ig.Fi loss decreases rapidly for increased separation of theurgixt
4 for r = 1 andr = 3. For both test cases, the performanceomponents. Forr > 3, the theoretical performance loss
of the reference system, the training based ECVQ, is veg/ near zero, and the high-rate performance of LC-ECVQ
close to the optimal performance predicted by the high-raé@proaches the theoretical optimum.
theory (16). The proposed LC-ECVQ approaches the predicted
performance (15) for rates above around seven bits perivecto
The performance gap between the proposed LC-ECVQ and the
reference system is about one bit for= 1 case, indicating

that the sub-optimality of the method for a GMM with heavily 2 | | 8
overlapped components. However, if the components are wellgl, i
separated, such as = 3, the two bounds coincide and

o ‘ ‘ ‘

the proposed LC-ECVQ approaches the theoretically optimal ™o 1 2 3 4 5
performance at a high rate.

Next, the maximum theoretical loss of using the proposed
LC-ECVQ for a model (20) is evaluated for artificial model$ig. 5. Maximum theoretical loss as a function of distancehts origin.

o LC-ECVQ

X Trained ECVQ
—— High-rate predictiof
- - -High-rate bounds
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15

20
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Hgig as function ofr
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Fig. 6. Relative MSE distortion (compared to the high-raiaition for a Fig. 7. Average Matlab execution time (per vector) usinggheposed LC-
D, lattice quantizer) as a function of rate for the LSF source. ECVQ and GSR-ECVQ on one test computer.

B. Speech derived source

In this section, the proposed LC-ECVQ is evaluated usingrﬁte MSE of the theoretically optim_al ECVQ. At rates abovg
ten-dimensional speech line spectral frequency (LSF)GH)UI‘ZO bits, ECVQ methods have a higher performance also in

extracted from the TIMIT speech database using the Adapti%acnce' Comparing the ECVQ me;hor?s, LhC'ECV(g_ pefrforrEs
Multi-Rate (AMR) speech codec [28]. The speech signals wefrseé than GSR-ECVQ for rgtes igher t aﬂ_zﬁ Its _orlt €
downsampled to 8kHz, and LSF vectors were extracted befdfelattice. The performance difference at a high rate is less

guantization. The training set consists of about 70000€ovec than 0.3 dB MSE. At rates lower than 26 biFs, LC-ECVQ
and the evaluation set consists of 50000 vectors. performs better than GSR-ECVQ, as 1l lattice vectors

A GMM with M — 16 mixture components with full of LC-ECVQ are aligned along the principal axes of each

covariance matrices was trained over the training set usimf(tl;”e cgr;%o;Tnt. At ﬁo bli_:t?:,VLC-ECV?iéflasl an MSLE: that
the expectation-maximization (EM) algorithm [29]. For ghi IS a{/out .f ower t anl Q. ohrt éosstgcce\,/ i ith
model, the maximum theoretical performance loss (20) ngs Q performs consistently worse than ) Q, wit

evaluated to be around 0.65 bits per vector. For lattice gu Msoétdqf'fs dB higher MSEH Comparmgbthe tc\)N? :?ét@f:es,bthi
tization, we have considered ti¢lattice and theD7, lattice fflerences at a high rate are about 0. or bot

[16]. TheD]“O lattice is the best known lattice for quantizatior{n;tmds' Cg nt3|stent t\r,1VItht the Iﬂlte_ory. ﬁt low rate?, thti Mfg
in ten dimensions and its normalized moment of inertia @ erence between e two latlices decreases lor the )

0.0708, compared td).0833 for the Z lattice [16]. Therefore, ECVQ method, which demonstrates that I, lattice is not

the theoretical MSE difference of the two lattice quantizat necessary the best lattice at low rates. Finally, usingatieeé
a high rate is about.71 dB adaptation scheme, the performance of LC-ECVQ is improved

The reference systems in this experiment are the GSE}c‘]nlflcantly at_low ratef, an(_Jl the MSE distortion is Io_wemrlh
ECVQ [4] and the resolution-constrained GMM vector qual -SR'E_CVQ with theD, lattice for_ rates below 2.5 bits. _The
tizer (GMM-RCVQ) [4] adapted to use the MSE distortio SE difference betvyee_n thé lattice and gdapnve lattices
criterion. The GMM-RCVQ is based on scalar quantizatiolﬁ almost co_nstgnt, indicating t.he space-ﬁ!llng advantage
in the transformed domain, equivalent to using a Z lattige f ec_tor quantization when the h|_gh-rat§a optlr_nal (best ".”)OV.V”
guantization. For a fair comparison, the same GMM was us tices are used only in those dimensions with large piici
in all three methods. The methods were implemented usi(ﬁgmponents.
shared codes and similar parameter settings when possiblBlext, the computational complexity of the two ECVQ meth-
to minimize irrelevant performance mismatch. The trainingds are evaluated by measuring the average code execution
based ECVQ [2] is excluded in this experiment due to théme (per vector) on one test computer (a Pentium 4 at 3.0
unmanageable complexity and memory requirement for t@Hz running Linux). The measurements as a function of the
tested rates. rate are shown in Fig. 7 for th®, lattice case. The code
The MSE distortion of the quantizers was evaluated over tegecution time of LC-ECVQ is almost constant for both the
evaluation set for different target rates. For clarity, M8BE encoder and the decoder. For GSR-ECVQ, it is constant for
distortion was subtracted by the high-rate MSE distorti®h (only the encoder and increases with rate for the decoder. The
for a D, lattice quantizer, and the differences as a functiocrode execution time of LC-ECVQ is about 6 times lower than
of rate (per vector) are shown in Fig. 6. GSR-ECVQ for the encoder, and 10-18 times lower for the
GMM-RCVQ performs more than 2 dB above the highdecoder depending on the rate.
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IX. SUMMARY AND CONCLUSION

We have proposed a new flexible and Iow-complexit)JZ]
entropy-constrained vector quantizer, LC-ECVQ, using lat
tice codebooks, Gaussian mixture modeling, and arithmetigl

coding for the MSE distortion measure. The proposed LC[4

ECVQ is a low complexity alternative to the GSR-ECVQ
proposed by Gardner, Subramaniam and Rao [1]. Compared g?
GSR-ECVQ, LC-ECVQ is sub-optimal due to the componen
classification and the arithmetic coding based on a Gaussian
density function. The performance bound by using the prd®l
posed LC-ECVQ is derived under a high-rate assumption,
and the theoretically loss is quantified for a given GMM][7]
density. We observed in our experiments that the loss deesea
with increased separation of the GMM mixture components.
For a ten-dimensional speech LSF source, the maximum

theoretical loss is 0.65 bits per vector. This suboptimalias
demonstrated experimentally for the same source, where GS

(8]

ECVQ achieved up to 0.3 dB lower MSE distortion than the

proposed LC-ECVQ for rates above 25 bits per vector.

The advantages of the proposed LC-ECVQ over GsRY
ECVQ are three-fold. First, the proposed LC-ECVQ has a
computational complexity that is independent of the codirig!]

rate in both the encoder and the decoder (the decoder cgpy

plexity of GSR-ECVQ increases linearly with rate). In the
LSF quantization experiment, the code execution time of L&

ECVQ is 6 times lower than GSR-ECVQ in encoding, ang,

10 to 18 times lower in decoding depending on the rate. The
reduced complexity is due to the simplified arithmetic cgdin
design based on a Gaussian density function. Second, the &E’J
posed LC-ECVQ facilitates a better performance at low rates
when the source exhibits vanishing dimensions (the higg-réa!6]
assumption is violated in these dimensions). The propos&gﬂl
LC-ECVQ has the possibility of applying different lattices
for different component quantizers depending on the local
behavior of the source. We have proposed a heuristic lattfcd
adaptation scheme in which the near-vanishing dimensions
(e.g., low eigenvalues compared to the MSE) are quantizé8l

using theZ lattice. The remaining dimensions are quantiz
using the best-known lattice in that dimension [16]. Apglie
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lattice [16] for rates below 25 bits. Finally, the proposed-L [22]
ECVQ is less sensitive to approximation errors in the CDF
computation, which simplifies the implementation on a fmitqZS]

precision computer.

We conclude that, for the LSF source, the performance

of the proposed LC-ECVQ is at least comparable to A

ECVQ at rates relevant for speech coding (20-28 bits per vec-
tor), whereas the computational complexity is much reducd@pl
The proposed LC-ECVQ can be applied to other sources
by adapting the GMM to the new data. An evaluation gbe]
the maximum theoretical loss (21) can give an indication &7]
the performance. The performance will be competitive if the

mixture components are sufficiently separated.
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